Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pointwise convergence of bilinear polynomial averages over the primes (2409.10510v1)

Published 16 Sep 2024 in math.DS, math.CA, and math.NT

Abstract: We show that on a $\sigma$-finite measure preserving system $X = (X,\nu, T)$, the non-conventional ergodic averages $$ \mathbb{E}_{n \in [N]} \Lambda(n) f(Tn x) g(T{P(n)} x)$$ converge pointwise almost everywhere for $f \in L{p_1}(X)$, $g \in L{p_2}(X)$, and $1/p_1 + 1/p_2 \leq 1$, where $P$ is a polynomial with integer coefficients of degree at least $2$. This had previously been established with the von Mangoldt weight $\Lambda$ replaced by the constant weight $1$ by the first and third authors with Mirek, and by the M\"obius weight $\mu$ by the fourth author. The proof is based on combining tools from both of these papers, together with several Gowers norm and polynomial averaging operator estimates on approximants to the von Mangoldt function of ''Cram\'er'' and ''Heath-Brown'' type.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com