Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLM-as-BT-Planner: Leveraging LLMs for Behavior Tree Generation in Robot Task Planning (2409.10444v3)

Published 16 Sep 2024 in cs.RO

Abstract: Robotic assembly tasks remain an open challenge due to their long horizon nature and complex part relations. Behavior trees (BTs) are increasingly used in robot task planning for their modularity and flexibility, but creating them manually can be effort-intensive. LLMs have recently been applied to robotic task planning for generating action sequences, yet their ability to generate BTs has not been fully investigated. To this end, we propose LLM-as-BT-Planner, a novel framework that leverages LLMs for BT generation in robotic assembly task planning. Four in-context learning methods are introduced to utilize the natural language processing and inference capabilities of LLMs for producing task plans in BT format, reducing manual effort while ensuring robustness and comprehensibility. Additionally, we evaluate the performance of fine-tuned smaller LLMs on the same tasks. Experiments in both simulated and real-world settings demonstrate that our framework enhances LLMs' ability to generate BTs, improving success rate through in-context learning and supervised fine-tuning.

Summary

We haven't generated a summary for this paper yet.