Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized symmetries of remarkable (1+2)-dimensional Fokker-Planck equation

Published 16 Sep 2024 in math-ph, math.AP, math.MP, and math.RA | (2409.10348v2)

Abstract: Using an original method, we find the algebra of generalized symmetries of a remarkable (1+2)-dimensional ultraparabolic Fokker-Planck equation, which is also called the Kolmogorov equation and is singled out within the entire class of ultraparabolic linear second-order partial differential equations with three independent variables by its wonderful symmetry properties. It turns out that the essential subalgebra of this algebra, which consists of linear generalized symmetries, is generated by the recursion operators associated with the nilradical of the essential Lie invariance algebra of the Kolmogorov equation, and the Casimir operator of the Levi factor of the latter algebra unexpectedly arises in the consideration. We also establish an isomorphism between this algebra and the Lie algebra associated with the second Weyl algebra, which provides a dual perspective for studying their properties. After developing the theoretical background of finding exact solutions of homogeneous linear systems of differential equations using their linear generalized symmetries, we efficiently apply it to the Kolmogorov equation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.