Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the signature of Brownian motion for high order SDE simulation (2409.10118v1)

Published 16 Sep 2024 in math.NA, cs.NA, and math.PR

Abstract: The signature is a collection of iterated integrals describing the "shape" of a path. It appears naturally in the Taylor expansions of controlled differential equations and, as a consequence, is arguably the central object within rough path theory. In this paper, we will consider the signature of Brownian motion with time, and present both new and recently developed approximations for some of its integrals. Since these integrals (or equivalent L\'{e}vy areas) are nonlinear functions of the Brownian path, they are not Gaussian and known to be challenging to simulate. To conclude the paper, we will present some applications of these approximations to the high order numerical simulation of stochastic differential equations (SDEs).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com