Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A degenerate version of Brion's formula (2409.09544v2)

Published 14 Sep 2024 in math.CO

Abstract: Let $\mathfrak{p} \subset V$ be a polytope and $\xi \in V_{\mathbb{C}}*$. We obtain an expression for $I(\mathfrak{p}; \alpha) := \int_{\mathfrak{p}} e{\langle \alpha, x \rangle} dx$ as a sum of meromorphic functions in $\alpha \in V*_{\mathbb{C}}$ parametrized by the faces $\mathfrak{f}$ of $\mathfrak{p}$ on which $\langle \xi, x \rangle$ is constant. Each term only depends on the local geometry of $\mathfrak{p}$ near $\mathfrak{f}$ (and on $\xi$) and is holomorphic at $\alpha = \xi$. When $\langle \xi, \cdot \rangle$ is only constant on the vertices of $\mathfrak{p}$ our formula reduces to Brion's formula. Suppose $\mathfrak{p}$ is a rational polytope with respect to a lattice $\Lambda$. We obtain an expression for $S(\mathfrak{p}; \alpha) := \sum_{\lambda \in \mathfrak{p} \cap \Lambda} e{\langle \alpha, \lambda \rangle}$ as a sum of meromorphic functions parametrized by the faces $\mathfrak{f}$ on which $e{\langle \xi, x \rangle} = 1$ on a finite index sublattice of $\text{lin}(\mathfrak{f}) \cap \Lambda$. Each term only depends on the local geometry of $\mathfrak{p}$ near $\mathfrak{f}$ (and on $\xi$ and $\Lambda$) and is holomorphic at $\alpha = \xi$. When $e{\langle \xi, \cdot \rangle} \neq 1$ at any non-zero lattice point on a line through the origin parallel to an edge of $\mathfrak{p}$, our formula reduces to Brion's formula, and when $\xi = 0$, it reduces to the Ehrhart quasi-polynomial. Our formulas are particularly useful for understanding how $I(\mathfrak{p}(h); \xi)$ and $S(\mathfrak{p}(h); \xi)$ vary in a family of polytopes $\mathfrak{p}(h)$ with the same normal fan. When considering dilates of a fixed polytope, our formulas may be viewed as polytopal analogues of Laplace's method and the method of stationary phase. Such expressions naturally show up in analysis on symmetric spaces and affine buildings.

Summary

We haven't generated a summary for this paper yet.