Quantitative propagation of chaos for non-exchangeable diffusions via first-passage percolation
Abstract: This paper develops a non-asymptotic approach to mean field approximations for systems of $n$ diffusive particles interacting pairwise. The interaction strengths are not identical, making the particle system non-exchangeable. The marginal law of any subset of particles is compared to a suitably chosen product measure, and we find sharp relative entropy estimates between the two. Building upon prior work of the first author in the exchangeable setting, we use a generalized form of the BBGKY hierarchy to derive a hierarchy of differential inequalities for the relative entropies. Our analysis of this complicated hierarchy exploits an unexpected but crucial connection with first-passage percolation, which lets us bound the marginal entropies in terms of expectations of functionals of this percolation process.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.