Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Yaglom limit for branching Brownian motion with absorption and slightly subcritical drift (2409.08789v1)

Published 13 Sep 2024 in math.PR

Abstract: Consider branching Brownian motion with absorption in which particles move independently as one-dimensional Brownian motions with drift $-\rho$, each particle splits into two particles at rate one, and particles are killed when they reach the origin. Kesten (1978) showed that this process dies out with probability one if and only if $\rho \geq \sqrt{2}$. We show that in the subcritical case when $\rho > \sqrt{2}$, the law of the process conditioned on survival until time $t$ converges as $t \rightarrow \infty$ to a quasi-stationary distribution, which we call the Yaglom limit. We give a construction of this quasi-stationary distribution. We also study the asymptotic behavior as $\rho \downarrow \sqrt{2}$ of this quasi-stationary distribution. We show that the logarithm of the number of particles and the location of the highest particle are of order $\epsilon{-1/3}$, and we obtain a limit result for the empirical distribution of the particle locations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com