Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the number of irreducible factors with a given multiplicity in function fields (2409.08559v1)

Published 13 Sep 2024 in math.NT

Abstract: Let $k \geq 1$ be a natural number and $f \in \mathbb{F}_q[t]$ be a monic polynomial. Let $\omega_k(f)$ denote the number of distinct monic irreducible factors of $f$ with multiplicity $k$. We obtain asymptotic estimates for the first and the second moments of $\omega_k(f)$ with $k \geq 1$. Moreover, we prove that the function $\omega_1(f)$ has normal order $\log (\text{deg}(f))$ and also satisfies the Erd\H{o}s-Kac Theorem. Finally, we prove that the functions $\omega_k(f)$ with $k \geq 2$ do not have normal order.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com