Papers
Topics
Authors
Recent
2000 character limit reached

Predicting and Accelerating Nanomaterials Synthesis Using Machine Learning Featurization

Published 12 Sep 2024 in cond-mat.mtrl-sci and cs.LG | (2409.08054v2)

Abstract: Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to establish quantitatively predictive relationships in small sets (~10) of expert-labeled data, saving significant time on subsequently grown samples. These predictive relationships are evaluated in a representative material system (\ce{W_{1-x}V_xSe2} on c-plane sapphire (0001)) with two aims: 1) predicting grain alignment of the deposited film using pre-growth substrate data, and 2) estimating vanadium dopant concentration using in-situ RHEED as a proxy for ex-situ methods (e.g. x-ray photoelectron spectroscopy). Both tasks are accomplished using the same materials-agnostic features, avoiding specific system retraining and leading to a potential 80\% time saving over a 100-sample synthesis campaign. These predictions provide guidance to avoid doomed trials, reduce follow-on characterization, and improve control resolution for materials synthesis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 4 likes about this paper.