Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fused $L_{1/2}$ prior for large scale linear inverse problem with Gibbs bouncy particle sampler (2409.07874v1)

Published 12 Sep 2024 in stat.CO and stat.ME

Abstract: In this paper, we study Bayesian approach for solving large scale linear inverse problems arising in various scientific and engineering fields. We propose a fused $L_{1/2}$ prior with edge-preserving and sparsity-promoting properties and show that it can be formulated as a Gaussian mixture Markov random field. Since the density function of this family of prior is neither log-concave nor Lipschitz, gradient-based Markov chain Monte Carlo methods can not be applied to sample the posterior. Thus, we present a Gibbs sampler in which all the conditional posteriors involved have closed form expressions. The Gibbs sampler works well for small size problems but it is computationally intractable for large scale problems due to the need for sample high dimensional Gaussian distribution. To reduce the computation burden, we construct a Gibbs bouncy particle sampler (Gibbs-BPS) based on a piecewise deterministic Markov process. This new sampler combines elements of Gibbs sampler with bouncy particle sampler and its computation complexity is an order of magnitude smaller. We show that the new sampler converges to the target distribution. With computed tomography examples, we demonstrate that the proposed method shows competitive performance with existing popular Bayesian methods and is highly efficient in large scale problems.

Summary

We haven't generated a summary for this paper yet.