Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Two-Team Polymatrix Games with Independent Adversaries (2409.07398v1)

Published 11 Sep 2024 in cs.GT

Abstract: Adversarial multiplayer games are an important object of study in multiagent learning. In particular, polymatrix zero-sum games are a multiplayer setting where Nash equilibria are known to be efficiently computable. Towards understanding the limits of tractability in polymatrix games, we study the computation of Nash equilibria in such games where each pair of players plays either a zero-sum or a coordination game. We are particularly interested in the setting where players can be grouped into a small number of teams of identical interest. While the three-team version of the problem is known to be PPAD-complete, the complexity for two teams has remained open. Our main contribution is to prove that the two-team version remains hard, namely it is CLS-hard. Furthermore, we show that this lower bound is tight for the setting where one of the teams consists of multiple independent adversaries. On the way to obtaining our main result, we prove hardness of finding any stationary point in the simplest type of non-convex-concave min-max constrained optimization problem, namely for a class of bilinear polynomial objective functions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets