Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite element approximation of stationary Fokker--Planck--Kolmogorov equations with application to periodic numerical homogenization (2409.07371v1)

Published 11 Sep 2024 in math.NA and cs.NA

Abstract: We propose and rigorously analyze a finite element method for the approximation of stationary Fokker--Planck--Kolmogorov (FPK) equations subject to periodic boundary conditions in two settings: one with weakly differentiable coefficients, and one with merely essentially bounded measurable coefficients under a Cordes-type condition. These problems arise as governing equations for the invariant measure in the homogenization of nondivergence-form equations with large drifts. In particular, the Cordes setting guarantees the existence and uniqueness of a square-integrable invariant measure. We then suggest and rigorously analyze an approximation scheme for the effective diffusion matrix in both settings, based on the finite element scheme for stationary FPK problems developed in the first part. Finally, we demonstrate the performance of the methods through numerical experiments.

Summary

We haven't generated a summary for this paper yet.