Population Dynamics of Schrödinger Cats
Abstract: We demonstrate an exact equivalence between classical population dynamics and Lindbladian evolution admitting a dark state and obeying a set of certain local symmetries. We then introduce {\em quantum population dynamics} as models in which this local symmetry condition is relaxed. This allows for non-classical processes in which animals behave like Schr\"odinger's cat and enter superpositions of live and dead states, thus resulting in coherent superpositions of different population numbers. We develop a field theory treatment of quantum population models as a synthesis of Keldysh and third quantization techniques and draw comparisons to the stochastic Doi-Peliti field theory description of classical population models. We apply this formalism to study a prototypical ``Schr\"odigner cat'' population model on a $d$-dimensional lattice, which exhibits a phase transition between a dark extinct phase and an active phase that supports a stable quantum population. Using a perturbative renormalization group approach, we find a critical scaling of the Schr\"odinger cat population distinct from that observed in both classical population dynamics and usual quantum phase transitions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.