Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A deep primal-dual BSDE method for optimal stopping problems (2409.06937v1)

Published 11 Sep 2024 in q-fin.CP and math.OC

Abstract: We present a new deep primal-dual backward stochastic differential equation framework based on stopping time iteration to solve optimal stopping problems. A novel loss function is proposed to learn the conditional expectation, which consists of subnetwork parameterization of a continuation value and spatial gradients from present up to the stopping time. Notable features of the method include: (i) The martingale part in the loss function reduces the variance of stochastic gradients, which facilitates the training of the neural networks as well as alleviates the error propagation of value function approximation; (ii) this martingale approximates the martingale in the Doob-Meyer decomposition, and thus leads to a true upper bound for the optimal value in a non-nested Monte Carlo way. We test the proposed method in American option pricing problems, where the spatial gradient network yields the hedging ratio directly.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com