Normalized ground state solutions of Schrödinger-KdV system in $\mathbb{R}^3$ (2409.06528v1)
Abstract: In this paper, we study the coupled Schr\"odinger-KdV system \begin{align*} \begin{cases} -\Delta u +\lambda_1 u=u3+\beta uv~~&\text{in}\mathbb{R}{3}, \-\Delta v +\lambda_2 v=\frac{1}{2}v2+\frac{1}{2}\beta u2&\text{in}~~\mathbb{R}{3} \end{cases} \end{align*} subject to the mass constraints \begin{equation*} \int_{\mathbb{R}{3}}|u|2 dx=a,\quad \int_{\mathbb{R}{3}}|v|2 dx=b, \end{equation*} where $a, b>0$ are given constants, $\beta>0$, and the frequencies $\lambda_1,\lambda_2$ arise as Lagrange multipliers. The system exhibits $L2$-supercritical growth. Using a novel constraint minimization approach, we demonstrate the existence of a local minimum solution to the system. Furthermore, we establish the existence of normalized ground state solutions.