Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic properties of the maximum likelihood estimator for Hidden Markov Models indexed by binary trees (2409.06295v1)

Published 10 Sep 2024 in math.PR, math.ST, and stat.TH

Abstract: We consider hidden Markov models indexed by a binary tree where the hidden state space is a general metric space. We study the maximum likelihood estimator (MLE) of the model parameters based only on the observed variables. In both stationary and non-stationary regimes, we prove strong consistency and asymptotic normality of the MLE under standard assumptions. Those standard assumptions imply uniform exponential memorylessness properties of the initial distribution conditional on the observations. The proofs rely on ergodic theorems for Markov chain indexed by trees with neighborhood-dependent functions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com