Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the fluctuations of the resolvent traces of a tensor model of sample covariance matrices (2409.06007v1)

Published 9 Sep 2024 in math.PR

Abstract: In this note, we consider a sample covariance matrix of the form $$M_{n}=\sum_{\alpha=1}m \tau_\alpha {\mathbf{y}}{\alpha}{(1)} \otimes {\mathbf{y}}{\alpha}{(2)}({\mathbf{y}}_{\alpha}{(1)} \otimes {\mathbf{y}}{\alpha}{(2)})T,$$ where $(\mathbf{y}{\alpha}{(1)},\, {\mathbf{y}}{\alpha}{(2)}){\alpha}$ are independent vectors uniformly distributed on the unit sphere $S{n-1}$ and $\tau_\alpha \in \mathbb{R}_+ $. We show that as $m, n \to \infty$, $m/n2\to c>0$, the centralized traces of the resolvents, $\mathrm{Tr}(M_n-zI_n){-1}-\mathbf{E}\mathrm{Tr}(M_n-zI_n){-1}$, $\Im z\ge \eta_0>0$, converge in distribution to a two-dimensional Gaussian random variable with zero mean and a certain covariance matrix. This work is a continuation of Dembczak-Ko{\l}odziejczyk and Lytova (2023), and Lytova (2018).

Summary

We haven't generated a summary for this paper yet.