Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affine groups as flag-transitive and point-primitive automorphism groups of symmetric designs (2409.04790v2)

Published 7 Sep 2024 in math.GR and math.CO

Abstract: In this article, we investigate symmetric designs admitting a flag-transitive and point-primitive affine automorphism group. We prove that if an automorphism group $G$ of a symmetric $(v,k,\lambda)$ design with $\lambda$ prime is point-primitive of affine type, then $G=2{6}{:}\mathrm{S}_{6}$ and $(v,k,\lambda)=(16,6,2)$, or $G$ is a subgroup of $\mathrm{A\Gamma L}{1}(q)$ for some odd prime power $q$. In conclusion, we present a classification of flag-transitive and point-primitive symmetric designs with $\lambda$ prime, which says that such an incidence structure is a projective space $\mathrm{PG}(n,q)$, it has parameter set $(15,7,3)$, $(7, 4, 2)$, $(11, 5, 2)$, $(11, 6, 2)$, $(16,6,2)$ or $(45, 12, 3)$, or $v=pd$ where $p$ is an odd prime and the automorphism group is a subgroup of $\mathrm{A\Gamma L}{1}(q)$.

Summary

We haven't generated a summary for this paper yet.