Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic bases of skew-symmetrizable affine type cluster algebras (2409.03954v1)

Published 6 Sep 2024 in math.RT

Abstract: Geiss, Leclerc and Schr\"oer introduced a class of 1-Iwanaga-Gorenstein algebras $H$ associated to symmetrizable Cartan matrices with acyclic orientations, generalizing the path algebras of acyclic quivers. They also proved that indecomposable rigid $H$-modules of finite projective dimension are in bijection with non-initial cluster variables of the corresponding Fomin-Zelevinsky cluster algebra. In this article, we prove in all affine types that their conjectural Caldero-Chapoton type formula on these modules coincide with the Laurent expression of cluster variables. By taking generic Caldero-Chapoton functions on varieties of modules of finite projective dimension, we obtain bases for affine type cluster algebras with full-rank coefficients containing all cluster monomials.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com