PIETRA: Physics-Informed Evidential Learning for Traversing Out-of-Distribution Terrain (2409.03005v1)
Abstract: Self-supervised learning is a powerful approach for developing traversability models for off-road navigation, but these models often struggle with inputs unseen during training. Existing methods utilize techniques like evidential deep learning to quantify model uncertainty, helping to identify and avoid out-of-distribution terrain. However, always avoiding out-of-distribution terrain can be overly conservative, e.g., when novel terrain can be effectively analyzed using a physics-based model. To overcome this challenge, we introduce Physics-Informed Evidential Traversability (PIETRA), a self-supervised learning framework that integrates physics priors directly into the mathematical formulation of evidential neural networks and introduces physics knowledge implicitly through an uncertainty-aware, physics-informed training loss. Our evidential network seamlessly transitions between learned and physics-based predictions for out-of-distribution inputs. Additionally, the physics-informed loss regularizes the learned model, ensuring better alignment with the physics model. Extensive simulations and hardware experiments demonstrate that PIETRA improves both learning accuracy and navigation performance in environments with significant distribution shifts.
- M. F. Ginting, S.-K. Kim, D. D. Fan, M. Palieri, M. J. Kochenderfer, and A.-a. Agha-Mohammadi, “SEEK: Semantic Reasoning for Object Goal Navigation in Real World Inspection Tasks,” arXiv:2405.09822, 2024.
- S. Triest, D. D. Fan, S. Scherer, and A.-A. Agha-Mohammadi, “UNRealNet: Learning Uncertainty-Aware Navigation Features from High-Fidelity Scans of Real Environments,” in Proc. IEEE Int. Conf. Robot. Autom., 2024, pp. 12 627–12 634.
- J. Frey, S. Khattak, M. Patel, D. Atha, J. Nubert, C. Padgett, M. Hutter, and P. Spieler, “RoadRunner–Learning Traversability Estimation for Autonomous Off-road Driving,” arXiv:2402.19341, 2024.
- C. Chung, G. Georgakis, P. Spieler, C. Padgett, A. Agha, and S. Khattak, “Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation,” IEEE Robot. Autom. Lett., 2024.
- X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. Schmittle, J. Lee, W. Yuan, Z. Q. Chen, S. Deng, G. Okopal, D. Fox, B. Boots, and A. Shaban, “TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation,” in Proc. Robot. Sci. Syst., 2023.
- R. Takemura and G. Ishigami, “Uncertainty-Aware Trajectory Planning: Using Uncertainty Quantification and Propagation in Traversability Prediction of Planetary Rovers,” IEEE Robot. Autom. Mag., 2024.
- M. V. Gasparino, A. N. Sivakumar, and G. Chowdhary, “WayFASTER: A Self-Supervised Traversability Prediction for Increased Navigation Awareness,” in Proc. IEEE Int. Conf. Robot. Autom., 2024, pp. 8486–8492.
- X. Yao, J. Zhang, and J. Oh, “RCA: Ride Comfort-Aware Visual Navigation via Self-Supervised Learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 7847–7852.
- J. Frey, M. Mattamala, N. Chebrolu, C. Cadena, M. Fallon, and M. Hutter, “Fast Traversability Estimation for Wild Visual Navigation,” in Proc. Robot. Sci. Syst., 2023.
- J. Seo, S. Sim, and I. Shim, “Learning Off-Road Terrain Traversability With Self-Supervisions Only,” IEEE Robot. Autom. Lett., vol. 8, no. 8, pp. 4617–4624, 2023.
- X. Cai, S. Ancha, L. Sharma, P. R. Osteen, B. Bucher, S. Phillips, J. Wang, M. Everett, N. Roy, and J. P. How, “EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy,” IEEE Trans. Robot., vol. 40, pp. 3756–3777, 2024.
- J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized Out-of-Distribution Detection: A Survey,” arXiv:2110.11334, 2021.
- J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu, “A Survey of Uncertainty in Deep Neural Networks,” Artif. Intell. Rev., vol. 56, no. 1, pp. 1513–1589, 2023.
- S. Ancha, P. R. Osteen, and N. Roy, “Deep Evidential Uncertainty Estimation for Semantic Segmentation under Out-Of-Distribution Obstacles,” in Proc. IEEE Int. Conf. Robot. Autom., 2024.
- X. Cai, M. Everett, L. Sharma, P. R. Osteen, and J. P. How, “Probabilistic Traversability Model for Risk-Aware Motion Planning in Off-Road Environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023, pp. 11 297–11 304.
- R. Schmid, D. Atha, F. Schöller, S. Dey, S. Fakoorian, K. Otsu, B. Ridge, M. Bjelonic, L. Wellhausen, M. Hutter, et al., “Self-Supervised Traversability Prediction by Learning to Reconstruct Safe Terrain,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 12 419–12 425.
- A. Saviolo, G. Li, and G. Loianno, “Physics-inspired temporal learning of quadrotor dynamics for accurate model predictive trajectory tracking,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 10 256–10 263, 2022.
- P. Maheshwari, W. Wang, S. Triest, M. Sivaprakasam, S. Aich, J. G. Rogers III, J. M. Gregory, and S. Scherer, “PIAug–Physics Informed Augmentation for Learning Vehicle Dynamics for Off-Road Navigation,” arXiv:2311.00815, 2023.
- P. Papadakis, “Terrain Traversability Analysis Methods for Unmanned Ground Vehicles: A Survey,” Eng. Appl. Artif. Intell., vol. 26, no. 4, pp. 1373–1385, 2013.
- A. Datar, C. Pan, M. Nazeri, A. Pokhrel, and X. Xiao, “Terrain-attentive learning for efficient 6-dof kinodynamic modeling on vertically challenging terrain,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2024.
- A. Datar, C. Pan, and X. Xiao, “Learning to Model and Plan for Wheeled Mobility on Vertically Challenging Terrain,” arXiv:2306.11611, 2023.
- X. Cai, M. Everett, J. Fink, and J. P. How, “Risk-Aware Off-Road Navigation via a Learned Speed Distribution Map,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 2931–2937.
- K. S. Sikand, S. Rabiee, A. Uccello, X. Xiao, G. Warnell, and J. Biswas, “Visual representation learning for preference-aware path planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 11 303–11 309.
- A. Pokhrel, A. Datar, M. Nazeri, and X. Xiao, “CAHSOR: Competence-Aware High-Speed Off-Road Ground Navigation in SE (3),” arXiv:2402.07065, 2024.
- I. Cho and W. Chung, “Learning Self-Supervised Traversability With Navigation Experiences of Mobile Robots: A Risk-Aware Self-Training Approach,” IEEE Robot. Autom. Lett., 2024.
- S. Jung, J. Lee, X. Meng, B. Boots, and A. Lambert, “V-STRONG: Visual Self-Supervised Traversability Learning for Off-road Navigation,” in Proc. IEEE Int. Conf. Robot. Autom., 2024, pp. 1766–1773.
- D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and A. akbar Agha-mohammadi, “STEP: Stochastic Traversability Evaluation and Planning for Risk-Aware Off-road Navigation,” in Proc. Robot. Sci. Syst., 2021.
- Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning,” in Proc. Int. Conf. Mach. Learn., vol. 48, 2016, pp. 1050–1059.
- I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep Exploration via Bootstrapped DQN,” in Proc. Adv. Neural Inf. Process Syst., vol. 29, 2016.
- D. T. Ulmer, C. Hardmeier, and J. Frellsen, “Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation,” Trans. Mach. Learn. Res., 2023.
- M. Endo, T. Taniai, R. Yonetani, and G. Ishigami, “Risk-Aware Path Planning via Probabilistic Fusion of Traversability Prediction for Planetary Rovers on Heterogeneous Terrains,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 11 852–11 858.
- H. Lee, J. Kwon, and C. Kwon, “Learning-Based Uncertainty-Aware Navigation in 3D Off-Road Terrains,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 10 061–10 068.
- B. Charpentier, O. Borchert, D. Zügner, S. Geisler, and S. Günnemann, “Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions,” in Proc. Int. Conf. Learn. Representations, 2022.
- J. Patrikar, S. Veer, A. Sharma, M. Pavone, and S. Scherer, “RuleFuser: Injecting Rules in Evidential Networks for Robust Out-of-Distribution Trajectory Prediction,” arXiv:2405.11139, 2024.
- Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu, “Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications,” arXiv:2211.08064, 2022.
- T. Han, A. Liu, A. Li, A. Spitzer, G. Shi, and B. Boots, “Model Predictive Control for Aggressive Driving Over Uneven Terrain,” arXiv:2311.12284, 2023.
- L. Sharma, M. Everett, D. Lee, X. Cai, P. Osteen, and J. P. How, “RAMP: A Risk-Aware Mapping and Planning Pipeline for Fast Off-Road Ground Robot Navigation,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 5730–5736.
- S. Talia, M. Schmittle, A. Lambert, A. Spitzer, C. Mavrogiannis, and S. S. Srinivasa, “Demonstrating HOUND: A Low-cost Research Platform for High-speed Off-road Underactuated Nonholonomic Driving,” in Proc. Robot. Sci. Syst., 2024.
- R. Agishev, K. Zimmermann, M. Pecka, and T. Svoboda, “MonoForce: Self-Supervised Learning of Physics-Aware Grey-Box Model for Predicting the Robot-Terrain Interaction,” arXiv:2309.09007, 2023.
- Z. Zhao, B. Li, Y. Du, T. Fu, and C. Wang, “PhysORD: A Neuro-Symbolic Approach for Physics-infused Motion Prediction in Off-road Driving,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2024.
- G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou, “Information Theoretic MPC for Model-Based Reinforcement Learning,” in Proc. IEEE Int. Conf. Robot. Autom., 2017, pp. 1714–1721.
- Z. Wang, O. So, K. Lee, and E. A. Theodorou, “Adaptive Risk Sensitive Model Predictive Control with Stochastic Search,” in Proc. Learn. Dyn. Control Conf., 2021, pp. 510–522.
- I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing Flows: An Introduction and Review of Current Methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 11, pp. 3964–3979, 2021.
- L. Hou, C.-P. Yu, and D. Samaras, “Squared Earth Mover’s Distance-Based Loss for Training Deep Neural Networks,” arXiv:1611.05916, 2016.
- A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor, H. Sugiyama, and D. Negrut, “Chrono: An Open Source Multi-physics Dynamics Engine,” in Proc. Springer High Perf. Comput. Sci. Eng., 2016, pp. 19–49.
- A. Datar, C. Pan, M. Nazeri, and X. Xiao, “Toward Wheeled Mobility on Vertically Challenging Terrain: Platforms, Datasets, and Algorithms,” in Proc. IEEE Int. Conf. Robot. Autom., 2024, pp. 16 322–16 329.