Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon (2409.02681v6)

Published 4 Sep 2024 in cs.LG, cs.AI, and stat.AP

Abstract: This study presents a comprehensive methodology for modeling and forecasting the historical time series of active fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil. The approach employs a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict the monthly accumulations of daily detected active fire spots. Data analysis revealed a consistent seasonality over time, with annual maximum and minimum values tending to repeat at the same periods each year. The primary objective is to verify whether the forecasts capture this inherent seasonality through machine learning techniques. The methodology involved careful data preparation, model configuration, and training using cross-validation with two seeds, ensuring that the data generalizes well to both the test and validation sets for both seeds. The results indicate that the combined LSTM and GRU model delivers excellent forecasting performance, demonstrating its effectiveness in capturing complex temporal patterns and modeling the observed time series. This research significantly contributes to the application of deep learning techniques in environmental monitoring, specifically in forecasting active fire spots. The proposed approach highlights the potential for adaptation to other time series forecasting challenges, opening new opportunities for research and development in machine learning and prediction of natural phenomena. Keywords: Time Series Forecasting; Recurrent Neural Networks; Deep Learning.

Summary

We haven't generated a summary for this paper yet.