Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inverse Sturm-Liouville problem with singular potential and spectral parameter in the boundary conditions

Published 3 Sep 2024 in math.SP | (2409.02254v1)

Abstract: This paper deals with the Sturm-Liouville problem that feature distribution potential, polynomial dependence on the spectral parameter in the first boundary condition, and analytical dependence, in the second one. We study an inverse spectral problem that consists in the recovery of the potential and the polynomials from some part of the spectrum. We for the first time prove local solvability and stability for this type of inverse problems. Furthermore, the necessary and sufficient conditions on the given subspectrum for the uniqueness of solution are found, and a reconstruction procedure is developed. Our main results can be applied to a variety of partial inverse problems. This is illustrated by an example of the Hochstadt-Lieberman-type problem with polynomial dependence on the spectral parameter in the both boundary conditions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.