2000 character limit reached
Some novel constructions of optimal Gromov-Hausdorff-optimal correspondences between spheres (2409.02248v2)
Published 3 Sep 2024 in math.MG
Abstract: In this article, as a first contribution, we provide alternative proofs of recent results by Harrison and Jeffs which determine the precise value of the Gromov-Hausdorff (GH) distance between the circle $\mathbb{S}1$ and the $n$-dimensional sphere $\mathbb{S}n$ (for any $n\in\mathbb{N}$) when endowed with their respective geodesic metrics. Additionally, we prove that the GH distance between $\mathbb{S}3$ and $\mathbb{S}4$ is equal to $\frac{1}{2}\arccos\left(\frac{-1}{4}\right)$, thus settling the case $n=3$ of a conjecture by Lim, M\'emoli and Smith.