Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging the Gap Between Central and Local Decision-Making: The Efficacy of Collaborative Equilibria in Altruistic Congestion Games (2409.01525v1)

Published 3 Sep 2024 in cs.GT, cs.SY, and eess.SY

Abstract: Congestion games are popular models often used to study the system-level inefficiencies caused by selfish agents, typically measured by the price of anarchy. One may expect that aligning the agents' preferences with the system-level objective--altruistic behavior--would improve efficiency, but recent works have shown that altruism can lead to more significant inefficiency than selfishness in congestion games. In this work, we study to what extent the localness of decision-making causes inefficiency by considering collaborative decision-making paradigms that exist between centralized and distributed in altruistic congestion games. In altruistic congestion games with convex latency functions, the system cost is a super-modular function over the player's joint actions, and the Nash equilibria of the game are local optima in the neighborhood of unilateral deviations. When agents can collaborate, we can exploit the common-interest structure to consider equilibria with stronger local optimality guarantees in the system objective, e.g., if groups of k agents can collaboratively minimize the system cost, the system equilibria are the local optima over k-lateral deviations. Our main contributions are in constructing tractable linear programs that provide bounds on the price of anarchy of collaborative equilibria in altruistic congestion games. Our findings bridge the gap between the known efficiency guarantees of centralized and distributed decision-making paradigms while also providing insights into the benefit of inter-agent collaboration in multi-agent systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. D. A. Lazar, S. Coogan, and R. Pedarsani, “The Price of Anarchy for Transportation Networks with Mixed Autonomy,” in Proceedings of the American Control Conference, 2018, pp. 6359–6365.
  2. G. Perakis and G. Roels, “The Price of Anarchy in Supply Chains: Quantifying the Efficiency of Price-Only Contracts,” Management Science, vol. 53, no. 8, pp. 1249–1268, Aug. 2007.
  3. L. Epstein and R. van Stee, “The price of anarchy on uniformly related machines revisited,” Information and Computation, vol. 212, pp. 37–54, 2012.
  4. P. Maillé and N. E. Stier-Moses, “Eliciting Coordination with Rebates,” Transportation Science, vol. 43, no. 4, pp. 473–492, 2009.
  5. A. Makabe, T. Wada, and Y. Fujisaki, “Utility design for infinite distributed welfare games,” IFAC-PapersOnLine, vol. 55, no. 25, pp. 223–228, 2022.
  6. R. W. Rosenthal, “A class of games possessing pure-strategy Nash equilibria,” International Journal of Game Theory, vol. 2, no. 1, pp. 65–67, Dec. 1973.
  7. G. Christodoulou and E. Koutsoupias, “The price of anarchy of finite congestion games,” in Proceedings of the Annual ACM Symposium on Theory of Computing, 2005, pp. 67–73.
  8. E. Koutsoupias and C. Papadimitriou, “Worst-Case Equilibria,” Computer Science Review, vol. 3, no. 2, pp. 65–69, May 2009.
  9. T. Roughgarden, “Intrinsic robustness of the price of anarchy,” Communications of the ACM, vol. 55, no. 7, pp. 116–123, 2012.
  10. D. Paccagnan, R. Chandan, B. L. Ferguson, and J. R. Marden, “Optimal Taxes in Atomic Congestion Games,” ACM Trans. Econ. Comput., vol. 9, no. 3, Aug. 2021.
  11. V. Bilò and C. Vinci, “Dynamic taxes for polynomial congestion games,” in EC 2016 - Proceedings of the 2016 ACM Conference on Economics and Computation.   New York, New York, USA: ACM Press, 2016, pp. 839–856.
  12. V. Ravindran Vijayalakshmi and A. Skopalik, “Improving Approximate Pure Nash Equilibria in Congestion Games,” in Web and Internet Economics, X. Chen, N. Gravin, M. Hoefer, and R. Mehta, Eds.   Cham: Springer International Publishing, 2020, pp. 280–294.
  13. M. Castiglioni, A. Celli, A. Marchesi, and N. Gatti, “Signaling in Bayesian Network Congestion Games: The Subtle Power of Symmetry,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 6, pp. 5252–5259, May 2021.
  14. I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos, “Taxes for Linear Atomic Congestion Games.”   Springer, Berlin, Heidelberg, 2006, pp. 184–195.
  15. D. Paccagnan and M. Gairing, “In Congestion Games, Taxes Achieve Optimal Approximation,” ArXiV, May 2021.
  16. S. C.-K. Chau, S. Shen, and Y. Zhou, “Decentralized Ride-Sharing and Vehicle-Pooling Based on Fair Cost-Sharing Mechanisms,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 1936–1946, Mar. 2022.
  17. F. Bistaffa, A. Farinelli, M. Vinyals, and A. Rogers, “Decentralised stable coalition formation among energy consumers in the smart grid,” in AAMAS.   Citeseer, 2012, pp. 1461–1462.
  18. A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and J. Pineau, “Tarmac: Targeted multi-agent communication,” in International Conference on Machine Learning.   PMLR, 2019, pp. 1538–1546.
  19. P.-A. Chen, B. D. Keijzer, D. Kempe, and G. Schäfer, “Altruism and Its Impact on the Price of Anarchy,” ACM Transactions on Economics and Computation, vol. 2, no. 4, pp. 17:1–17:45, Oct. 2014.
  20. P. Tang and D. Yu, “Balanced outcomes in wage bargaining,” in Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, 2018, pp. 2091–2093.
  21. M. Hoefer, “Strategic cooperation in cost sharing games,” International Journal of Game Theory, vol. 42, no. 1, pp. 29–53, Feb. 2013.
  22. M. Bullinger, “Computing Desirable Partitions in Coalition Formation Games,” in Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, ser. AAMAS ’20.   Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, May 2020, pp. 2185–2187.
  23. R. J. Aumann, “Acceptable points in general cooperative n-person games,” Contributions to the Theory of Games, vol. 4, pp. 287–324, 1959.
  24. R. Nessah and G. Tian, “On the existence of strong Nash equilibria,” Journal of Mathematical Analysis and Applications, vol. 414, no. 2, pp. 871–885, 2014.
  25. T. Harks, M. Klimm, and R. H. Möhring, “Strong Nash equilibria in games with the lexicographical improvement property,” in Internet and Network Economics: 5th International Workshop, WINE 2009, Rome, Italy, December 14-18, 2009. Proceedings 5.   Springer, 2009, pp. 463–470.
  26. R. Holzman and N. Law-Yone, “Strong equilibrium in congestion games,” Games and economic behavior, vol. 21, no. 1-2, pp. 85–101, 1997.
  27. N. Gatti, M. Rocco, and T. Sandholm, “On the verification and computation of strong Nash equilibrium,” arXiv preprint arXiv:1711.06318, 2017.
  28. J. B. Clempner and A. S. Poznyak, “Finding the strong nash equilibrium: Computation, existence and characterization for markov games,” Journal of Optimization Theory and Applications, vol. 186, pp. 1029–1052, 2020.
  29. A. Epstein, M. Feldman, and Y. Mansour, “Strong equilibrium in cost sharing connection games,” in Proceedings of the 8th ACM Conference on Electronic Commerce, ser. EC ’07.   New York, NY, USA: Association for Computing Machinery, Jun. 2007, pp. 84–92.
  30. Y. Bachrach, V. Syrgkanis, É. Tardos, and M. Vojnović, “Strong Price of Anarchy, Utility Games and Coalitional Dynamics,” in Algorithmic Game Theory, ser. Lecture Notes in Computer Science, R. Lavi, Ed.   Berlin, Heidelberg: Springer, 2014, pp. 218–230.
  31. A. Fiat, H. Kaplan, M. Levy, and S. Olonetsky, “Strong price of anarchy for machine load balancing,” in ICALP, vol. 4596.   Springer, 2007, pp. 583–594.
  32. N. Andelman, M. Feldman, and Y. Mansour, “Strong price of anarchy,” Games and Economic Behavior, vol. 65, no. 2, pp. 289–317, Mar. 2009.
  33. B. L. Ferguson, D. Paccagnan, B. S. R. Pradelski, and J. R. Marden, “Collaborative Decision-Making and the k-Strong Price of Anarchy in Common Interest Games,” Nov. 2023.
  34. S. Chien and A. Sinclair, “Strong and pareto price of anarchy in congestion games.” in ICALP (1).   Citeseer, 2009, pp. 279–291.
  35. M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, “A survey of autonomous vehicles: Enabling communication technologies and challenges,” Sensors, vol. 21, no. 3, p. 706, 2021.
  36. J. F. Nash Jr, “Equilibrium points in n-person games,” Proceedings of the national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.
  37. D. Monderer and L. S. Shapley, “Potential Games,” Games and Economic Behavior, vol. 14, no. 1, pp. 124–143, 1996.
  38. T. Roughgarden, “How Bad Is Selfish Routing?” J. ACM, vol. 49, no. 2, pp. 236–259, 2002.
  39. Z. Xu and V. Tzoumas, “Resource-Aware Distributed Submodular Maximization: A Paradigm for Multi-Robot Decision-Making,” in 2022 IEEE 61st Conference on Decision and Control (CDC), Dec. 2022, pp. 5959–5966.
  40. I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos, “Taxes for Linear Atomic Congestion Games,” ACM Trans. Algorithms, vol. 7, no. 1, pp. 13:1–13:31, Dec. 2010.
  41. S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann, “Exact Price of Anarchy for Polynomial Congestion Games,” in STACS 2006, B. Durand and W. Thomas, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 218–229.

Summary

We haven't generated a summary for this paper yet.