Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mutual information from modular flow in CFTs (2409.01406v1)

Published 2 Sep 2024 in hep-th, math-ph, and math.MP

Abstract: The operator product expansion (OPE) of twist operators in the replica trick framework enables a long-distance expansion of the mutual information (MI) in conformal field theories (CFTs). In this expansion, the terms are labeled by primary operators, as contributions from descendant operators can be resummed into conformal blocks. However, for the MI, the expansion involves primaries from the multi-replica theory, which includes far more operators than those in the original theory. In this work, we develop a method to resum this series, yielding an expansion in terms of the primaries of the original theory, specifically restricted to the two-copy sector. This is achieved by expressing the twist operators in a non-local manner across different replicas and using a modular flow representation to obtain the n -> 1 limit of the R\'enyi index. We explicitly compute the resulting "enhanced conformal blocks", which, surprisingly, provide excellent approximations to the MI of generalized free fields across the full range of cross ratios. Remarkably, this approximation appears to be exact in the limit of large spacetime dimensions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com