Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refined Statistical Bounds for Classification Error Mismatches with Constrained Bayes Error (2409.01309v2)

Published 2 Sep 2024 in cs.IT and math.IT

Abstract: In statistical classification/multiple hypothesis testing and machine learning, a model distribution estimated from the training data is usually applied to replace the unknown true distribution in the Bayes decision rule, which introduces a mismatch between the Bayes error and the model-based classification error. In this work, we derive the classification error bound to study the relationship between the Kullback-Leibler divergence and the classification error mismatch. We first reconsider the statistical bounds based on classification error mismatch derived in previous works, employing a different method of derivation. Then, motivated by the observation that the Bayes error is typically low in machine learning tasks like speech recognition and pattern recognition, we derive a refined Kullback-Leibler-divergence-based bound on the error mismatch with the constraint that the Bayes error is lower than a threshold.

Citations (1)

Summary

We haven't generated a summary for this paper yet.