Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CUR for Implicit Time Integration of Random Partial Differential Equations on Low-Rank Matrix Manifolds (2408.16591v1)

Published 29 Aug 2024 in math.NA and cs.NA

Abstract: Dynamical low-rank approximation allows for solving large-scale matrix differential equations (MDEs) with significantly fewer degrees of freedom and has been applied to a growing number of applications. However, most existing techniques rely on explicit time integration schemes. In this work, we introduce a cost-effective Newton's method for the implicit time integration of stiff, nonlinear MDEs on low-rank matrix manifolds. Our methodology is focused on MDEs resulting from the discretization of random partial differential equations (PDEs). Cost-effectiveness is achieved by solving the MDE at the minimum number of entries required for a rank-$r$ approximation. We present a novel CUR low-rank approximation that requires solving the parametric PDE at $r$ strategically selected parameters and $\mathcal{O}(r)$ grid points using Newton's method. The selected random samples and grid points adaptively vary over time and are chosen using the discrete empirical interpolation method or similar techniques. The proposed methodology is developed for high-order implicit multistep and Runge-Kutta schemes and incorporates rank adaptivity, allowing for dynamic rank adjustment over time to control error. Several analytical and PDE examples, including the stochastic Burgers' and Gray-Scott equations, demonstrate the accuracy and efficiency of the presented methodology.

Citations (2)

Summary

We haven't generated a summary for this paper yet.