Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration (2408.15289v1)

Published 26 Aug 2024 in cs.CY and cs.LG

Abstract: Plant diseases significantly impact agricultural productivity, resulting in economic losses and food insecurity. Prompt and accurate detection is crucial for the efficient management and mitigation of plant diseases. This study investigates advanced techniques in plant disease detection, emphasizing the integration of image processing, machine learning, deep learning methods, and mobile technologies. High-resolution images of plant leaves were captured and analyzed using convolutional neural networks (CNNs) to detect symptoms of various diseases, such as blight, mildew, and rust. This study explores 14 classes of plants and diagnoses 26 unique plant diseases. We focus on common diseases affecting various crops. The model was trained on a diverse dataset encompassing multiple crops and disease types, achieving 98.14% accuracy in disease diagnosis. Finally integrated this model into mobile apps for real-time disease diagnosis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.