Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distilling Long-tailed Datasets (2408.14506v1)

Published 24 Aug 2024 in cs.LG

Abstract: Dataset distillation (DD) aims to distill a small, information-rich dataset from a larger one for efficient neural network training. However, existing DD methods struggle with long-tailed datasets, which are prevalent in real-world scenarios. By investigating the reasons behind this unexpected result, we identified two main causes: 1) Expert networks trained on imbalanced data develop biased gradients, leading to the synthesis of similarly imbalanced distilled datasets. Parameter matching, a common technique in DD, involves aligning the learning parameters of the distilled dataset with that of the original dataset. However, in the context of long-tailed datasets, matching biased experts leads to inheriting the imbalance present in the original data, causing the distilled dataset to inadequately represent tail classes. 2) The experts trained on such datasets perform suboptimally on tail classes, resulting in misguided distillation supervision and poor-quality soft-label initialization. To address these issues, we propose a novel long-tailed dataset distillation method, Long-tailed Aware Dataset distillation (LAD). Specifically, we propose Weight Mismatch Avoidance to avoid directly matching the biased expert trajectories. It reduces the distance between the student and the biased expert trajectories and prevents the tail class bias from being distilled to the synthetic dataset. Moreover, we propose Adaptive Decoupled Matching, which jointly matches the decoupled backbone and classifier to improve the tail class performance and initialize reliable soft labels. This work pioneers the field of long-tailed dataset distillation (LTDD), marking the first effective effort to distill long-tailed datasets.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com