Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness criteria for a chemotaxis consumption model with gradient nonlinearities (2408.14250v1)

Published 26 Aug 2024 in math.AP

Abstract: This work deals with the consumption chemotaxis problem \begin{equation*} \begin{cases*} u_t = \Delta u - \chi \nabla \cdot u\nabla v + \lambda u - \mu u2 - c \lvert \nabla u \rvert\gamma, & \text{in $\Omega\times(0,\tmax)$}, v_t = \Delta v - uv, & \text{in $\Omega\times(0,\tmax)$}, \end{cases*} \end{equation*} in a bounded and smooth domain $\Omega\subset\Rn$, $n\geq 3$, under Neumann boundary conditions, for $\chi,\lambda,\mu,c>0$, $\tmax\in(0,\infty]$ and for $u_0,v_0$ positive initial data with a certain regularity. We will show that the problem has a unique and uniformly bounded classical solution for $\gamma\in\bigl(\frac{2n}{n+1},2\bigr]$. Moreover, we have the same result for $\gamma=\frac{2n}{n+1}$ and a condition that involves the parameters $c,\mu,n,\chi$ and the initial data.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com