Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the essential norms of Toeplitz operators on abstract Hardy spaces built upon Banach function spaces (2408.13907v1)

Published 25 Aug 2024 in math.FA

Abstract: Let $X$ be a Banach function space over the unit circle such that the Riesz projection $P$ is bounded on $X$ and let $H[X]$ be the abstract Hardy space built upon $X$. We show that the essential norm of the Toeplitz operator $T(a):H[X]\to H[X]$ coincides with $|a|{L\infty}$ for every $a\in C+H\infty$ if and only if the essential norm of the backward shift operator $T(\mathbf{e}{-1}):H[X]\to H[X]$ is equal to one, where $\mathbf{e}_{-1}(z)=z{-1}$. This result extends an observation by B\"ottcher, Krupnik, and Silbermann for the case of classical Hardy spaces.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com