Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models (2408.13661v1)

Published 24 Aug 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Characterizing materials with electron micrographs is a crucial task in fields such as semiconductors and quantum materials. The complex hierarchical structure of micrographs often poses challenges for traditional classification methods. In this study, we propose an innovative backbone architecture for analyzing electron micrographs. We create multi-modal representations of the micrographs by tokenizing them into patch sequences and, additionally, representing them as vision graphs, commonly referred to as patch attributed graphs. We introduce the Hierarchical Network Fusion (HNF), a multi-layered network structure architecture that facilitates information exchange between the multi-modal representations and knowledge integration across different patch resolutions. Furthermore, we leverage LLMs to generate detailed technical descriptions of nanomaterials as auxiliary information to assist in the downstream task. We utilize a cross-modal attention mechanism for knowledge fusion across cross-domain representations(both image-based and linguistic insights) to predict the nanomaterial category. This multi-faceted approach promises a more comprehensive and accurate representation and classification of micrographs for nanomaterial identification. Our framework outperforms traditional methods, overcoming challenges posed by distributional shifts, and facilitating high-throughput screening.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.