Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Properties of Iteratively Coupled Surface-Subsurface Models (2408.12582v1)

Published 22 Aug 2024 in math.NA and cs.NA

Abstract: Surface-subsurface flow models for hydrological applications solve a coupled multiphysics problem. This usually consists of some form of the Richards and shallow water equations. A typical setup couples these two nonlinear partial differential equations in a partitioned approach via boundary conditions. Full interaction between the subsolvers is ensured by an iterative coupling procedure. This can be accelerated using relaxation. In this paper, we apply continuous and fully discrete linear analysis techniques to study an idealized, linear, 1D-0D version of a surface-subsurface model. These result in explicit expressions for the convergence factor and an optimal relaxation parameter, depending on material and discretization parameters. We test our analysis results numerically for fully nonlinear 2D-1D experiments based on existing benchmark problems. The linear analysis can explain fast convergence of iterations observed in practice for different materials and test cases, even though we are not able to capture various nonlinear effects.

Summary

We haven't generated a summary for this paper yet.