Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Causal Discovery in Financial Networks with Piecewise Quantile Regression (2408.12210v1)

Published 22 Aug 2024 in q-fin.ST, econ.EM, and physics.soc-ph

Abstract: Financial networks can be constructed using statistical dependencies found within the price series of speculative assets. Across the various methods used to infer these networks, there is a general reliance on predictive modelling to capture cross-correlation effects. These methods usually model the flow of mean-response information, or the propagation of volatility and risk within the market. Such techniques, though insightful, don't fully capture the broader distribution-level causality that is possible within speculative markets. This paper introduces a novel approach, combining quantile regression with a piecewise linear embedding scheme - allowing us to construct causality networks that identify the complex tail interactions inherent to financial markets. Applying this method to 260 cryptocurrency return series, we uncover significant tail-tail causal effects and substantial causal asymmetry. We identify a propensity for coins to be self-influencing, with comparatively sparse cross variable effects. Assessing all link types in conjunction, Bitcoin stands out as the primary influencer - a nuance that is missed in conventional linear mean-response analyses. Our findings introduce a comprehensive framework for modelling distributional causality, paving the way towards more holistic representations of causality in financial markets.

Summary

We haven't generated a summary for this paper yet.