Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Peer Direct and Indirect Effects in Observational Network Data (2408.11492v2)

Published 21 Aug 2024 in cs.AI

Abstract: Estimating causal effects is crucial for decision-makers in many applications, but it is particularly challenging with observational network data due to peer interactions. Many algorithms have been proposed to estimate causal effects involving network data, particularly peer effects, but they often overlook the variety of peer effects. To address this issue, we propose a general setting which considers both peer direct effects and peer indirect effects, and the effect of an individual's own treatment, and provide identification conditions of these causal effects and proofs. To estimate these causal effects, we utilize attention mechanisms to distinguish the influences of different neighbors and explore high-order neighbor effects through multi-layer graph neural networks (GNNs). Additionally, to control the dependency between node features and representations, we incorporate the Hilbert-Schmidt Independence Criterion (HSIC) into the GNN, fully utilizing the structural information of the graph, to enhance the robustness and accuracy of the model. Extensive experiments on two semi-synthetic datasets confirm the effectiveness of our approach. Our theoretical findings have the potential to improve intervention strategies in networked systems, with applications in areas such as social networks and epidemiology.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets