FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts (2408.11304v1)
Abstract: As LLMs push the boundaries of AI capabilities, their demand for data is growing. Much of this data is private and distributed across edge devices, making Federated Learning (FL) a de-facto alternative for fine-tuning (i.e., FedLLM). However, it faces significant challenges due to the inherent heterogeneity among clients, including varying data distributions and diverse task types. Towards a versatile FedLLM, we replace traditional dense model with a sparsely-activated Mixture-of-Experts (MoE) architecture, whose parallel feed-forward networks enable greater flexibility. To make it more practical in resource-constrained environments, we present FedMoE, the efficient personalized FL framework to address data heterogeneity, constructing an optimal sub-MoE for each client and bringing the knowledge back to global MoE. FedMoE is composed of two fine-tuning stages. In the first stage, FedMoE simplifies the problem by conducting a heuristic search based on observed activation patterns, which identifies a suboptimal submodel for each client. In the second stage, these submodels are distributed to clients for further training and returned for server aggregating through a novel modular aggregation strategy. Meanwhile, FedMoE progressively adjusts the submodels to optimal through global expert recommendation. Experimental results demonstrate the superiority of our method over previous personalized FL methods.