Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence rate in the law of logarithm for negatively dependent random variables under sub-linear expectations (2408.10662v1)

Published 20 Aug 2024 in math.PR

Abstract: Let ${X,X_n,n\ge 1}$ be a sequence of identically distributed, negatively dependent (NA) random variables under sub-linear expectations, and denote $S_n=\sum_{i=1}{n}X_i$, $n\ge 1$. Assume that $h(\cdot)$ is a positive non-decreasing function on $(0,\infty)$ fulfulling $\int_{1}{\infty}(th(t)){-1}\dif t=\infty$. Write $Lt=\ln \max{\me,t}$, $\psi(t)=\int_{1}{t}(sh(s)){-1}\dif s$, $t\ge 1$. In this sequel, we establish that $\sum_{n=1}{\infty}(nh(n)){-1}\vv\left{|S_n|\ge (1+\varepsilon)\sigma\sqrt{2nL\psi(n)}\right}<\infty$, $\forall \varepsilon>0$ if $\ee(X)=\ee(-X)=0$ and $\ee(X2)=\sigma2\in (0,\infty)$. The result generalizes that of NA random variables in probability space.

Summary

We haven't generated a summary for this paper yet.