Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of Levenberg-Marquardt method with Singular Scaling for nonzero residue nonlinear least-squares problems (2408.10370v2)

Published 19 Aug 2024 in math.NA, cs.NA, and math.OC

Abstract: Recently, a Levenberg-Marquardt method with Singular Scaling matrix, called LMMSS, was proposed and successfully applied in parameter estimation in heat conduction problems, where the choice of suitable singular scaling matrix resulted in better quality approximate solutions than those of the classical Levenberg-Marquardt. In this paper, we study convergence properties of LMMSS when applied to nonzero residual nonlinear least-squares problems. We show that the local convergence of the iterates depends both on the control of the gradient linearization error and on a suitable choice of the regularization parameter. Incidentally, we show that the rate of convergence is dictated by a measure of nonlinearity and residual size, so that if such a measure goes to zero quickly enough, the convergence can be superlinear, otherwise, in general, we show that not even linear convergence can be expected if such a measure is not small enough. Additionally, we propose a globalized version of the method and prove that any limit point of the generated sequence is stationary for the least-squares function. Some examples are provided to illustrate our theoretical results.

Summary

We haven't generated a summary for this paper yet.