Hypercomplete étale framed motives and comparison of stable homotopy groups of motivic spectra and étale realizations over a field (2408.09990v1)
Abstract: For any base field and integer $l$ invertible in $k$, we prove that $\Omega\infty_{\mathbb{G}_m}$ and $\Omega\infty_{\mathbb{P}1}$ commute with hyper \'etale sheafification $L_{\acute{e}t}$ and Betti realization through infinite loop space theory in motivic homotopy theory. The central subject of this article is an $l$-complete hypercomplete \'etale analog of the framed motives theory developed by Garkusha and Panin. Using Bachman's hypercomplete \'etale \RigidityTheorem and the $\infty$-categorical approach of framed motivic spaces by Elmanto, Hoyois, Khan, Sosnilo, Yakerson, we prove the recognition principle and the framed motives formula for the composite functor [\Delta\mathrm{op}\mathrm{Sm}_k\to \mathrm{Spt}{\mathbb{G}m{-1}}{\mathbb{A}1,\acute{e}t}(\mathrm{Sm}k)\xrightarrow{\Omega\infty{\mathbb{G}_m}} \mathrm{Spt}{\acute{e}t,\hat{n}}(\mathrm{Sm}_k).] The first applications include the hypercomplete \'etale stable motivic connectivity theorem and an \'etale local isomorphism [\pi{\mathbb{A}1,\mathrm{Nis}}{i,j}(E)\simeq\pi{\mathbb{A}1,\acute{e}t}_{i,j}(E)] for any $l$-complete effective motivic spectra $E$, and $j\geq 0$. Furthermore, we obtain a new proof for Levine's comparison isomorphism over $\mathbb C$, $\pi_{i,0}{\mathbb{A}1,\mathrm{Nis}}(E)(\mathbb{C})\cong \pi_i(Be(E))$, and Zargar's generalization for algebraically closed fields, that applies to an arbitrary base field.