Papers
Topics
Authors
Recent
2000 character limit reached

Optimal insurance design with Lambda-Value-at-Risk

Published 19 Aug 2024 in q-fin.RM | (2408.09799v1)

Abstract: This paper explores optimal insurance solutions based on the Lambda-Value-at-Risk ($\Lambda\VaR$). If the expected value premium principle is used, our findings confirm that, similar to the VaR model, a truncated stop-loss indemnity is optimal in the $\Lambda\VaR$ model. We further provide a closed-form expression of the deductible parameter under certain conditions. Moreover, we study the use of a $\Lambda'\VaR$ as premium principle as well, and show that full or no insurance is optimal. Dual stop-loss is shown to be optimal if we use a $\Lambda'\VaR$ only to determine the risk-loading in the premium principle. Moreover, we study the impact of model uncertainty, considering situations where the loss distribution is unknown but falls within a defined uncertainty set. Our findings indicate that a truncated stop-loss indemnity is optimal when the uncertainty set is based on a likelihood ratio. However, when uncertainty arises from the first two moments of the loss variable, we provide the closed-form optimal deductible in a stop-loss indemnity.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.