Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploratory Optimal Stopping: A Singular Control Formulation (2408.09335v2)

Published 18 Aug 2024 in math.OC, cs.LG, q-fin.MF, and stat.ML

Abstract: This paper explores continuous-time and state-space optimal stopping problems from a reinforcement learning perspective. We begin by formulating the stopping problem using randomized stopping times, where the decision maker's control is represented by the probability of stopping within a given time--specifically, a bounded, non-decreasing, c`adl`ag control process. To encourage exploration and facilitate learning, we introduce a regularized version of the problem by penalizing it with the cumulative residual entropy of the randomized stopping time. The regularized problem takes the form of an (n+1)-dimensional degenerate singular stochastic control with finite-fuel. We address this through the dynamic programming principle, which enables us to identify the unique optimal exploratory strategy. For the specific case of a real option problem, we derive a semi-explicit solution to the regularized problem, allowing us to assess the impact of entropy regularization and analyze the vanishing entropy limit. Finally, we propose a reinforcement learning algorithm based on policy iteration. We show both policy improvement and policy convergence results for our proposed algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.