Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Principal Component Analysis and Moran Statistics for Multivariate Functional Areal Data (2408.08630v1)

Published 16 Aug 2024 in stat.ME

Abstract: In this article, we present the bivariate and multivariate functional Moran's I statistics and multivariate functional areal spatial principal component analysis (mfasPCA). These methods are the first of their kind in the field of multivariate areal spatial functional data analysis. The multivariate functional Moran's I statistic is employed to assess spatial autocorrelation, while mfasPCA is utilized for dimension reduction in both univariate and multivariate functional areal data. Through simulation studies and real-world examples, we demonstrate that the multivariate functional Moran's I statistic and mfasPCA are powerful tools for evaluating spatial autocorrelation in univariate and multivariate functional areal data analysis.

Summary

We haven't generated a summary for this paper yet.