Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PatUntrack: Automated Generating Patch Examples for Issue Reports without Tracked Insecure Code (2408.08619v1)

Published 16 Aug 2024 in cs.CR, cs.AI, and cs.SE

Abstract: Security patches are essential for enhancing the stability and robustness of projects in the software community. While vulnerabilities are officially expected to be patched before being disclosed, patching vulnerabilities is complicated and remains a struggle for many organizations. To patch vulnerabilities, security practitioners typically track vulnerable issue reports (IRs), and analyze their relevant insecure code to generate potential patches. However, the relevant insecure code may not be explicitly specified and practitioners cannot track the insecure code in the repositories, thus limiting their ability to generate patches. In such cases, providing examples of insecure code and the corresponding patches would benefit the security developers to better locate and fix the insecure code. In this paper, we propose PatUntrack to automatically generating patch examples from IRs without tracked insecure code. It auto-prompts LLMs to make them applicable to analyze the vulnerabilities. It first generates the completed description of the Vulnerability-Triggering Path (VTP) from vulnerable IRs. Then, it corrects hallucinations in the VTP description with external golden knowledge. Finally, it generates Top-K pairs of Insecure Code and Patch Example based on the corrected VTP description. To evaluate the performance, we conducted experiments on 5,465 vulnerable IRs. The experimental results show that PatUntrack can obtain the highest performance and improve the traditional LLM baselines by +14.6% (Fix@10) on average in patch example generation. Furthermore, PatUntrack was applied to generate patch examples for 76 newly disclosed vulnerable IRs. 27 out of 37 replies from the authors of these IRs confirmed the usefulness of the patch examples generated by PatUntrack, indicating that they can benefit from these examples for patching the vulnerabilities.

Summary

We haven't generated a summary for this paper yet.