Discrete-time SIS Social Contagion Processes on Hypergraphs (2408.08602v1)
Abstract: Recent research on social contagion processes has revealed the limitations of traditional networks, which capture only pairwise relationships, to characterize complex multiparty relationships and group influences properly. Social contagion processes on higher-order networks (simplicial complexes and general hypergraphs) have therefore emerged as a novel frontier. In this work, we investigate discrete-time Susceptible-Infected-Susceptible (SIS) social contagion processes occurring on weighted and directed hypergraphs and their extensions to bivirus cases and general higher-order SIS processes with the aid of tensor algebra. Our focus lies in comprehensively characterizing the healthy state and endemic equilibria within this framework. The emergence of bistability or multistability behavior phenomena, where multiple equilibria coexist and are simultaneously locally asymptotically stable, is demonstrated in view of the presence of the higher-order interaction. The novel sufficient conditions of the appearance for system behaviors, which are determined by both (higher-order) network topology and transition rates, are provided to assess the likelihood of the SIS social contagion processes causing an outbreak. More importantly, given the equilibrium is locally stable, an explicit domain of attraction associated with the system parameters is constructed. Moreover, a learning method to estimate the transition rates is presented. In the end, the attained theoretical results are supplemented via numerical examples. Specifically, we evaluate the effectiveness of the networked SIS social contagion process by comparing it with the $2n$-state Markov chain model. These numerical examples are given to highlight the performance of parameter learning algorithms and the system behaviors of the discrete-time SIS social contagion process.