Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
222 tokens/sec
2000 character limit reached

Analog Spiking Neuron in CMOS 28 nm Towards Large-Scale Neuromorphic Processors (2408.07734v1)

Published 14 Aug 2024 in cs.NE and eess.SP

Abstract: The computational complexity of deep learning algorithms has given rise to significant speed and memory challenges for the execution hardware. In energy-limited portable devices, highly efficient processing platforms are indispensable for reproducing the prowess afforded by much bulkier processing platforms. In this work, we present a low-power Leaky Integrate-and-Fire (LIF) neuron design fabricated in TSMC's 28 nm CMOS technology as proof of concept to build an energy-efficient mixed-signal Neuromorphic System-on-Chip (NeuroSoC). The fabricated neuron consumes 1.61 fJ/spike and occupies an active area of 34 $\mu m{2}$, leading to a maximum spiking frequency of 300 kHz at 250 mV power supply. These performances are used in a software model to emulate the dynamics of a Spiking Neural Network (SNN). Employing supervised backpropagation and a surrogate gradient technique, the resulting accuracy on the MNIST dataset, using 4-bit post-training quantization stands at 82.5\%. The approach underscores the potential of such ASIC implementation of quantized SNNs to deliver high-performance, energy-efficient solutions to various embedded machine-learning applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets