Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Knowledge Distillation with Refined Logits (2408.07703v2)

Published 14 Aug 2024 in cs.CV

Abstract: Recent research on knowledge distillation has increasingly focused on logit distillation because of its simplicity, effectiveness, and versatility in model compression. In this paper, we introduce Refined Logit Distillation (RLD) to address the limitations of current logit distillation methods. Our approach is motivated by the observation that even high-performing teacher models can make incorrect predictions, creating a conflict between the standard distillation loss and the cross-entropy loss. This conflict can undermine the consistency of the student model's learning objectives. Previous attempts to use labels to empirically correct teacher predictions may undermine the class correlation. In contrast, our RLD employs labeling information to dynamically refine teacher logits. In this way, our method can effectively eliminate misleading information from the teacher while preserving crucial class correlations, thus enhancing the value and efficiency of distilled knowledge. Experimental results on CIFAR-100 and ImageNet demonstrate its superiority over existing methods. The code is provided at \text{https://github.com/zju-SWJ/RLD}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com