A categorical interpretation of Morita equivalence for dynamical von Neumann algebras (2408.07701v2)
Abstract: $\DeclareMathOperator{\G}{\mathbb{G}}\DeclareMathOperator{\Rep}{Rep} \DeclareMathOperator{\Corr}{Corr}$Let $\G$ be a locally compact quantum group and $(M, \alpha)$ a $\G$-$W*$-algebra. The object of study of this paper is the $W*$-category $\Rep{\G}(M)$ of normal, unital $\G$-representations of $M$ on Hilbert spaces endowed with a unitary $\G$-representation. This category has a right action of the category $\Rep(\G)= \Rep{\G}(\mathbb{C})$ for which it becomes a right $\Rep(\G)$-module $W*$-category. Given another $\G$-$W*$-algebra $(N, \beta)$, we denote the category of normal $$-functors $\Rep{\G}(N)\to \Rep{\G}(M)$ compatible with the $\Rep(\G)$-module structure by $\operatorname{Fun}{\Rep(\G)}(\Rep{\G}(N), \Rep{\G}(M))$ and we denote the category of $\G$-$M$-$N$-correspondences by $\operatorname{Corr}{\G}(M,N)$. We prove that there are canonical functors $P: \Corr{\G}(M,N)\to \operatorname{Fun}{\Rep(\G)}(\Rep{\G}(N), \Rep{\G}(M))$ and $Q: \operatorname{Fun}_{\Rep(\G)}(\Rep{\G}(N), \Rep{\G}(M))\to \operatorname{Corr}{\G}(M,N)$ such that $Q \circ P\cong \operatorname{id}.$ We use these functors to show that the $\G$-dynamical von Neumann algebras $(M, \alpha)$ and $(N, \beta)$ are equivariantly Morita equivalent if and only if $\Rep{\G}(N)$ and $\Rep{\G}(M)$ are equivalent as $\Rep(\G)$-module-$W^$-categories. Specializing to the case where $\G$ is a compact quantum group, we prove that moreover $P\circ Q \cong \operatorname{id}$, so that the categories $\Corr{\G}(M,N)$ and $\operatorname{Fun}_{\Rep(\G)}(\Rep{\G}(N), \Rep{\G}(M))$ are equivalent. This is an equivariant version of the Eilenberg-Watts theorem for actions of compact quantum groups on von Neumann algebras.