LoRA$^2$ : Multi-Scale Low-Rank Approximations for Fine-Tuning Large Language Models (2408.06854v1)
Abstract: Fine-tuning LLMs with high parameter efficiency for downstream tasks has become a new paradigm. Low-Rank Adaptation (LoRA) significantly reduces the number of trainable parameters for fine-tuning. Although it has demonstrated commendable performance, updating parameters within a single scale may not be the optimal choice for complex downstream tasks.In this paper, we extend the LoRA to multiple scales, dubbed as LoRA$2$. We first combine orthogonal projection theory to train a set of LoRAs in two mutually orthogonal planes. Then, we improve the importance score algorithm, which reduce parameter sensitivity score calculations by approximately 98.5\%. By pruning singular values with lower importance scores, thereby enhancing adaptability to various downstream tasks. Extensive experiments are conducted on two widely used pre-trained models to validate the effectiveness of LoRA$2$. Results show that it significantly reduces the number of trainable parameters to just 0.72\% compared to full fine-tuning, while still delivering highly impressive performance. Even when the parameters are further reduced to 0.17M, it still achieves comparable results to the baseline with 8 times more parameters. Our code is available here: https://anonymous.4open.science/r/LoRA-2-5B4C
- Jia-Chen Zhang (6 papers)
- Yu-jie Xiong (7 papers)
- He-Xi Qiu (1 paper)
- Dong-Hai Zhu (3 papers)
- Chun-Ming Xia (5 papers)