Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty (2408.06816v2)

Published 13 Aug 2024 in cs.AI and cs.CL

Abstract: Despite the massive advancements in LLMs, they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on single-labeled questions, which removes data uncertainty: the irreducible randomness often present in user queries, which can arise from factors like multiple possible answers. This limitation may cause uncertainty quantification results to be unreliable in practical settings. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that previous methods relatively struggle compared to single-answer settings, though this varies depending on the task. Moreover, we observe that entropy- and consistency-based methods effectively estimate model uncertainty, even in the presence of data uncertainty. We believe these observations will guide future work on uncertainty quantification in more realistic settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com