Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear non-periodic homogenization: Existence, local uniqueness and estimates (2408.06705v5)

Published 13 Aug 2024 in math.CA

Abstract: We consider periodic homogenization with localized defects of boundary value problems for semilinear ODE systems of the type $$ \Big((A(x/\varepsilon)+B(x/\varepsilon))u'(x)+c(x,u(x))\Big)'= d(x,u(x)) \mbox{ for } x \in (0,1),\; u(0)=u(1)=0. $$ For small $\varepsilon>0$ we show existence of weak solutions $u=u_\varepsilon$ as well as their local uniqueness for $|u-u_0|\infty \approx 0$, where $u=u_0$ is a given solution to the homogenized problem $$ \Big(A_0u'+c(x,u(x))\Big)'= d(x,u(x)) \mbox{ for } x \in (0,1),\; u(0)=u(1)=0,\; A_0:=\left(\int_01A(y){-1}dy\right){-1} $$ such that the linearized problem $$ \Big(A_0u'+\partial_uc(x,u_0(x))u(x)\Big)'= \partial_ud(x,u_0(x))u(x) \mbox{ for } x \in (0,1),\; u(0)=u(1)=0 $$ does not have weak solutions $u\not=0$. Further, we prove that $|u\varepsilon-u_0|\infty\to 0$ and, if $c(\cdot,u)\in W{1,\infty}((0,1);\mathbb{R}n)$, that $|u\varepsilon-u_0|_\infty=O(\varepsilon)$ for $\varepsilon \to 0$. Moreover, all these statements are true, roughly speaking, uniformly with respect to the localized defects $B$. We assume that $A \in L\infty(\mathbb{R};\mathbb{M}_n)$ is 1-periodic, $B \in L\infty(\mathbb{R};\mathbb{M}_n)\cap L1(\mathbb{R};\mathbb{M}_n)$, $A(y)$ and $A(y)+B(y)$ are positive definite uniformly with respect to $y$, $c(x,\cdot),d(x,\cdot)\in C1(\mathbb{R}n;\mathbb{R}n)$ and $c(\cdot,u),d(\cdot,u) \in L\infty((0,1);\mathbb{R}n)$. The main tool of the proofs is an abstract result of implicit function theorem type which has been tailored for applications to nonlinear singular perturbation and homogenization problems.

Summary

We haven't generated a summary for this paper yet.